Neural Mechanisms for Dynamic Acoustic Communication in Flies
Social interactions require continually adjusting behavior in response to sensory feedback. For example, when having a conversation, the sounds or facial expressions from our partner affect our speech patterns in real time. Our speech signals, in turn, are the sensory cues that modify our partner’s actions. What are the underlying computations and neural mechanisms that govern these interactions? To address these questions, my lab studies the acoustic communication system of Drosophila. Importantly, Drosophila acoustic behaviors are highly quantifiable and robust. During courtship, males produce time-varying songs via wing vibration, while females arbitrate mating decisions. We discovered that, rather than being a stereotyped fixed action sequence, male song structure and intensity are continually sculpted by interactions with the female, over timescales ranging from tens of milliseconds to minutes – and we are mapping the underlying circuits and computations. We have also developed methods to relate song representations in the female brain to changes in her behavior, across multiple timescales. Our focus on natural acoustic signals, either as the output of the male nervous system or as the input to the female nervous system, provides a powerful, quantitative handle for studying the basic building blocks of communication
Date: 6 December 2017, 12:00 (Wednesday, 9th week, Michaelmas 2017)
Venue: Oxford Martin School, 34 Broad Street OX1 3BD
Speaker: Mala Murthy (University of Princeton)
Organising department: Department of Physiology, Anatomy and Genetics (DPAG)
Organiser: Fiona Woods (University of Oxford, Department of Physiology Anatomy and Genetics, Centre for Neural Circuits and Behaviour)
Organiser contact email address:
Part of: CNCB Seminar Series
Booking required?: Not required
Audience: Members of the University only
Editor: Fiona Woods