Spatial uncertainty and environmental geometry in navigation

Variations in the geometry of the environment, such as the shape and size of an enclosure, have profound effects on navigational behaviour and its neural underpinning. Here, we show that these effects arise as a consequence of a single, unifying principle: to navigate efficiently, the brain must maintain and update the uncertainty about one’s location. We developed an image-computable Bayesian ideal observer model of navigation, continually combining noisy visual and self-motion inputs, and a neural encoding model optimized to represent the location uncertainty computed by the ideal observer. Through mathematical analysis and numerical simulations, we show that the ideal observer accounts for a diverse range of sometimes paradoxical distortions of human homing behaviour in anisotropic and deformed environments, including ‘boundary tethering’, and its neural encoding accounts for distortions of rodent grid cell responses under identical environmental manipulations. Our results demonstrate that spatial uncertainty plays a key role in navigation.